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Cooperative Multiple-Agent Multi-Armed Bandits
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Cooperative Multiple-Agent Multi-Armed Bandits
m { arms: each associated with a Bernoulli variable X;(k) with mean p(k).
m Assume p(1) > --- > p(K).
mMAgentsint=1,..., T:

m Each agent i pulls an arm and collects reward X,f’) from pulled arms.
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m /X arms: each associated with a Bernoulli variable X;(k) with mean p(k).
m Assume p(1) > - > p(K).
mMAgentsint=1,..., T:

m Each agent i pulls an arm and collects reward X,E') from pulled arms.
m Group regret:

E[RY°(A)] == MTu(1) - E [ZIG[M] Zte[T] Xt(,-)(Aﬁi))]

m Full communication: E[R$°(A)
m No communication: E[RY°(A)

m Communication costs:

O(KlogT)

] =
]=O(MKlog T)

E[Ct(A)] :=E {Ziew] Zte[T] 1{agent i communicates in time t}] .
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New Objective: Maximum Individual Regret
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(a) Drone swarm (b) Path routing (c) Max-min fairness

m Overall performance is sensitive to the “bad” agent.
m Max-min fairness is equivalent to minimizing the “bottleneck” agent’s regret.
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Related Works and Contributions

Table 1: A comparison summary of prior literature and this work

| Individual regret Group regret Communication cost
DPE2 [Wang et al., 2020] O(KlogT) O(KlogT) O(K2M?)
ComEx [Madhushani and Leonard, 2021] | O(K log T) O(Klog T) O(KMlog T)
GosInE [Chawla et al., 2020] O(K/M+2)logT) O((K+2M)logT) Q(logT)
Dec_UCB [Zhu et al., 2021] O((K/M)log T) O(KlogT) O(MT)
UCB-TCOM (our algorithm) | O((K/M)log T) O(KlogT) O(KMlog(log T))
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UCB-TCOM (our algorithm) | O((K/M)log T) O(KlogT) O(KMlog(log T))

The first near-optimal algorithm ucB-TCoM on individual regret with efficient
communications.
A communication policy TCoM that

(a) Meta policy: can be executed on top of any bandit algorithm;
(b) Tunable: can be tuned to trade off communications (0 to O(T)) with regrets.
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Tunable COMmunication TcoM (1/3): O(log T)
Focus on Suboptimal Arms’ Observation Sharing

IDEA: Share suboptimal arms’ obs., Yes! Share-optimal-arm;Ne.

m share suboptimal arms’ observation = reduce this arm’s #pulls = save cost
m share optimal arms’ observation = reduce this arm’s #pulls = increase cost
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IDEA: Share suboptimal arms’ obs., Yes! Share-optimal-arm;Ne.
m share suboptimal arms’ observation = reduce this arm’s #pulls = save cost
m share optimal arms’ observation = reduce this arm’s #pulls = increase cost
o(T

DESIGN: Construct a communication arm set C¢(«)

m include the arms that are likely to be suboptimal.
m only share new observations for arms in the set Ci(«).

#times of pulling

O(log T)
I B e e

1 2 3 4 5
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Tunable COMunication TcoM (2/3): O(logglog T)
Dynamically Buffer Observations for Communication

IDEA: Regret only deteriorates up to a constant multiplier when the observation
delays increase geometrically [Gao et al., 2019].

7/14



Tunable COMunication TcoM (2/3): O(logglog T)
Dynamically Buffer Observations for Communication

IDEA: Regret only deteriorates up to a constant multiplier when the observation
delays increase geometrically [Gao et al., 2019].

DESIGN: Buffer observations and communicate whenever the buffered #obs
increases by a ratio 5 (> 1).
m e.g., if the ratio 3 is 2, broadcast when Ny(k) = 2,4,8,16,. ..

7/14



Tunable COMunication TcoM (2/3): O(logglog T)
Dynamically Buffer Observations for Communication

IDEA: Regret only deteriorates up to a constant multiplier when the observation
delays increase geometrically [Gao et al., 2019].

DESIGN: Buffer observations and communicate whenever the buffered #obs
increases by a ratio 5 (> 1).
m e.g., if the ratio 3 is 2, broadcast when Ny(k) = 2,4,8,16,. ..
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_ E[RY°(A)]

Tunable COMunication TcoM (3/3): E[RM(A4)] v

Symmetric Actions for All Agents

IDEA: Minimize maximum individual regret
< Evenly divide group regret
<= In each time slot, all agents pull the same arm
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_ E[RY°(A)]

Tunable COMunication TcoM (3/3): E[RM(A4)] v

Symmetric Actions for All Agents

IDEA: Minimize maximum individual regret
< Evenly divide group regret
<= In each time slot, all agents pull the same arm

DESIGN: Agents run the same arm-pulling policy and use the same set of global
observations (communicated to all agents).
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Algorithm 1 The ucB-TcoM Algorithm (for each agent)

1: Input: communication arm set parameter « and buffering ratio
2: Initialization: n;(k) = 0, Ny(k) =0, is(k) = 0, 7:(k) =0
3: for each decision round t do > Parallelly run for-loops in Lines 3 and 12.

), k) from the past round do

12: for each newly received message (/i (k
)s and the communication set C(«)

13: Update the empirical mean /i;(k

), Ny
t(k),

(
n
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7 “Increase Ny(A;) by 1
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Theoretical Results of ucB-TCOM
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a Theorem 1
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E[RT°(A)]

m Symmetric: E[RMY(A)] = 0

—near-optimal individual regret.
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Simulations (1/3): uCB-TCOM vs. Baselines
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Figure 5: UCB-TCOM VS. Dec_UCB, GosInE, DPE2, ComEx and COUCB
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Simulations (2/3): Tunable Parameters « and
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Figure 6: Impact of communication set parameter « with fixed g = 2 in Figures 6a; and
buffering ratio 5 with fixed o = 1.2 in Figures 6b

12/14



Simulations (3/3): Meta-Policy TcoM to AAE and TS
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Figure 7: UCB-TCOM vS. AAE-TCOM, TS—-TCOM
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Conclusion

An algorithm achieves the near-optimal individual and group regrets with
O(loglog T) communications.
A meta and tunable communication policy TCOM.

share suboptimal action’s observations;
geometrical growth buffer;
symmetric design.
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Conclusion

An algorithm achieves the near-optimal individual and group regrets with
O(loglog T) communications.
A meta and tunable communication policy TCOM.

share suboptimal action’s observations;
geometrical growth buffer;
symmetric design.

Future works:
m Pareto frontier of group/individual regrets vs. communication costs trade-off.
m Remove the time-dependence of the communication costs.
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Thank you!

Full paper at openreview.net/forum?id=QTXKTXJKIh
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Detail of Communication Arm Set Construction

Given tuning parameter a, communication arm set C¢(«) of agent i/ at time ¢
contains all arms identified as suboptimal, i.e.,

Ci(a) = {k € [K] : 3Kk' € [K]\ {k} such that tUCB¢(K',a) > tLCB¢(k, )}, (1)

log t log t
(k) (k)
and (k) denotes the number of times of the global reward observations of arm k
up to time slot t.

where tUCB¢(k, o) == fiy(k) + « , and tLCB(k, ) = fit(k) — «
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Theoretial Results Detail (1/2)

Theorem (Regret upper bounds of ucB-TCcoM for a > 1)

When the communication arm set parameter o > 1! and buffering-ratio 5 > 1,
UCB-TCOM attains a near-optimal group regret upper bound in terms of number of
decision rounds T, arms K, and agents M, or formally,

ERr(A) <Y Sil(of)T + /\/IK&";i_1 @)

1’
k>1 @

and UCB-TCOM also attains a near-optimal individual regret upper bound, or
formally,
88 log T 20° — 1

vagk) KT ®

E[RTY(A)] <
k>1

"The condition o > 1 can be relaxed to « > 1/\@ via the peeling technique.
14/14



Theoretical Results Detail (2/2)
Theorem (communication costs of ucB-TcoM for all a)
The communication costs of UCB-TCOM has the following properties:
(i) When oo < —\/2, no communication occurs among agents.

(i) When —v2 < a < /2 and 3 > 1, the number of broadcasts of observations of
the optimal arm by one agent is O(log(log T)). More rigorously, it is less than

2
Iogg((g+a> (BIZiTnLMKZO;z__:)). (4)
— 2 (8]}

(iiiy When o > 1, almost all observations of suboptimal arms—except for a finite
number independent of T—are broadcast.

(iv) When o > 2*[“(1) , almost all observations of the optimal arm—except for a

finite number that is independent of T—are broadcast.
14/14
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